## Changes, clarifications, and errata

This document describes changes between versions of the book Dancing with Qubits by Robert S. Sutor and published by Packt Publishing. It does not include minor changes in formatting or punctuation.

The changes in one printing were incorporated into all later printings. The page numbers refer to the paperback version of the book.

## Changes after the First Edition, third printing, June 2021, Production reference 1290421

Section

## New Page

Old Text
New Text

|  |  | $s$ | $b$ | $r$ | $s$ | $b$ | $r$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | . | . 2 |  | . | . 2 |  |
|  |  | . 4 | . 0 | . 4 | . 4 | . 0 | . 4 |  |
| 3.5.3 | 82 | . 8 | . 00 | . 8 | . 8 | . 00 | . 8 |  |
|  |  | 1.6 | . 0001 | . 6 | 1.6 | . 001 | . 6 |  |
|  |  | 1.2 | . 00011 | . 2 | 1.2 | . 0011 | . 2 |  |
|  |  | . 4 | . 000110 | . 4 | . 4 | . 00110 | . 4 |  |
|  |  | $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ |  |
| 3.5.3 | 82 | $.210=$ | 0112 |  | $.210=$ | $11_{2}$ |  |  |
| 3.9.2 | 98 | $\operatorname{Im}(z)$ | $-\operatorname{Im}(\bar{z})=$ |  | $\operatorname{Im}(\bar{z})$ | $-\operatorname{Im}(z)=$ |  |  |
| 4.3.2 | 127 | $\begin{aligned} & \arcsin \\ & -1 \leq \\ & \frac{\pi}{2} \leq \end{aligned}$ | is a functi 1 and ran $\sin (x) \leq$ | with domain | $\begin{aligned} & \arcsin \\ & -1 \leq \\ & \hline-\frac{\pi}{2} \end{aligned}$ | is a func 1 and ra $\operatorname{rcsin}(x)$ |  | main |
| 4.3.2 | 128 | $\begin{aligned} & \text { arctan } \\ & \mathbb{R} \text { anc } \\ & \hline \frac{\pi}{2} \end{aligned}$ | is a func ge $\tan (x)<$ | with domain all of | $\begin{aligned} & \text { arcta } \\ & \mathbb{R} \text { an } \\ & --\frac{\pi}{2} \end{aligned}$ | is a func ge $\operatorname{ctan}(x)$ |  | main all of |
| 7.2 | 230 | $\|v\rangle\langle w\|$ | $\left[\begin{array}{cc} v_{1} \overline{w_{1}} & v_{1} \\ v_{2} \overline{w_{1}} & v_{2} \\ \vdots & \\ v_{2} \overline{w_{1}} & v_{2} \end{array}\right.$ | $\left.\begin{array}{cc} \cdots & v_{1} \overline{w_{m}} \\ \cdots & v_{2} \overline{w_{m}} \\ \ddots & \vdots \\ \cdots & v_{2} \overline{w_{m}} \end{array}\right]$ | $\|\nu\rangle\langle\nu$ | $\left[\begin{array}{c} v_{1} \overline{w_{1}} \\ v_{2} \overline{w_{1}} \\ \vdots \\ v_{n} \overline{w_{1}} \end{array}\right.$ | $5 .$ | $\left.\begin{array}{c} v_{1} \overline{w_{m}} \\ v_{2} \overline{w_{m}} \\ \vdots \\ v_{n} \overline{w_{m}} \end{array}\right]$ |
| 7.3.3 | 239 | $\begin{aligned} & \text { For } \mid \psi \\ & r_{1} e^{\varphi} \end{aligned}$ | $\frac{\text { xpressed ge }}{\left\|\|0\rangle+r_{2} e^{\varphi}\right.}$ | ally by ) | For $r_{1} e e^{\text {e }}$ | $\begin{aligned} & \text { xpressed } \\ & >+r_{2} e^{\varphi_{2}} \end{aligned}$ | erally |  |


| Section | New Page | Old Text | New Text |
| :---: | :---: | :---: | :---: |
| 7.4 | 246 | The inverse function $f^{-1}(a)$ for an $a$ in $\mathbb{R}$ is defined by $f^{-1}(a)=$ $\begin{cases}(0,-1) & \text { when } a=0 \\ \left(\frac{4 a}{4+a^{2}}+\sqrt{1-\left(\frac{4 a}{4+a^{2}}\right)^{2}}\right) & \text { when }\|a\| \geq 1 \\ \left(\frac{4 a}{4+a^{2}}-\sqrt{1-\left(\frac{4 a}{4+a^{2}}\right)^{2}}\right) & \text { otherwise }\end{cases}$ | The inverse function $f^{-1}(a)$ for an $a$ in $\mathbb{R}$ is defined by $f^{-1}(a)=(x, y)$ where $(x, y)=(0,-1)$ when $a=0$, and $x=$ $\left\{\begin{array}{l}\frac{4 a}{4+a^{2}}+\sqrt{1-\left(\frac{4 a}{4+a^{2}}\right)^{2}} \quad \text { when }\|a\| \geq 1 \\ \frac{4 a}{4+a^{2}}-\sqrt{1-\left(\frac{4 a}{4+a^{2}}\right)^{2}} \quad \text { otherwise } \\ \text { with } y=-\frac{2}{a} x+1 .\end{array}\right.$ |
| 7.5 | 249 | $\begin{aligned} & r_{1} e^{\varphi_{1} i}\|0\rangle+r_{2} e^{\varphi_{2} i}\|1\rangle= \\ & \left(e^{\varphi_{1} i}\right)\left(r_{1}\|0\rangle+r_{2} e^{i\left(\varphi_{2}-\varphi_{2}\right)}\|1\rangle\right) \end{aligned}$ | $\begin{aligned} & r_{1} e^{\varphi_{1} i}\|0\rangle+r_{2} e^{\varphi_{2} i}\|1\rangle= \\ & \left(e^{\varphi_{1} i}\right)\left(r_{1}\|0\rangle+r_{2} e^{i\left(\varphi_{2}-\varphi_{1}\right)}\|1\rangle\right) \end{aligned}$ |
| 7.5 | 249 | if the difference is negative. $\beta$ | if the difference is negative. |
| 8.2.2 | 282 | $\|0\rangle\langle 0\|=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] \quad$ and $\quad\|1\rangle\langle 0\|=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$. | $\|0\rangle\langle 0\|=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] \quad$ and $\quad\|1\rangle\langle 0\|=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$ |
| Changes after the First Edition, second printing, February 2020, |  |  |  |

These changes should be applied to the text in this edition.

Section
New Page

27
2.1
2.1
2.5
3.4.2

73
the square of an odd integer looks like

$$
4 k^{2}+2 k+1
$$

$c_{\sigma_{x}} c_{\sigma_{y}}$, and $c_{\sigma_{z}}$ are Pauli matrices

## New Text

Thus a terabyte is $10^{12}=$ $1,000,000,000,000$ bytes.

If I change bit 6 in 'a' to a 0 , I get the character '!'.
produces a 2-bit answer $C S$.
the square of an odd integer looks like
$4 k^{2}+4 k+1$
$\sigma_{x} \sigma_{y}$, and $\sigma_{z}$ are Pauli matrices

| Section | New Page | Old Text | New Text |
| :---: | :---: | :---: | :---: |
| 8.2.1 | 280 | the tensor products of two 1-qubit kets: | the tensor products of two 1-qubit kets: |
|  |  | $\|\psi\rangle_{1} \otimes\|\psi\rangle_{2}=$ | $\|\psi\rangle_{1} \otimes\|\psi\rangle_{2}=$ |
|  |  | $\left(a_{1}\|0\rangle_{1}+b_{1}\|1\rangle_{1}\right) \otimes$ | $\left(a_{1}\|0\rangle_{1}+b_{1}\|1\rangle_{1}\right) \otimes$ |
|  |  | $\left(a_{1}\|0\rangle_{1}+b_{2}\|1\rangle_{1}\right)$ | $\left(a_{2}\|0\rangle_{2}+b_{2}\|1\rangle_{2}\right)$ |
| 8.2.2 | 282 | and we have | and we have |
|  |  | $+\left\|2^{2}-1\right\|^{2}=1$ | $+\left\|a_{2^{n}-1}\right\|^{2}=1$ |
| 8.3.1 | 287 | summations like $\sum_{j=0}^{n-1}$ at the end of the | should be changed to $\sum_{j=0}^{2^{n}-1}$ |
|  |  | section |  |
|  |  | $\mathbf{H}^{\otimes 4}\|0\rangle=\frac{1}{\sqrt{2^{4}}} \sum_{j=0}^{3}\|j\rangle$ | $\mathbf{H}^{\otimes 4}\|0\rangle=\frac{1}{\sqrt{2^{4}}} \sum_{j=0}^{2^{4}-1}\|j\rangle$ |
| 9.6.2 | 328 | we are talking about the balanced superposition ket $\|\varphi\rangle=\mathbf{H}^{\otimes 2}\|000\rangle \mathbf{H}^{\otimes 2}$. | we are talking about the balanced superposition ket $\|\varphi\rangle=\mathbf{H}^{\otimes 3}\|000\rangle$. |
| 9.8.2 | 343 | Note how the how the signs reverse. | Note how the signs reverse. |
| 10.2.3 | 371 | Keep going until $N$ is not prime. | Keep going until $N$ is not odd. |
| 10.2.3 | 376 | Let's try $N=143 . s=11$ and since $s^{2} \neq 144$, set $u=s+1=12$. | Let's try $N=143 . s=11$ and since $s^{2} \neq 143$, set $u=s+1=12$. |
| 10.2.4 | 378 | The the integer square root of $N$ is 4 . | Then the integer square root of $N$ is 4. |
| 11.4.2 | 418 | but we are looking the longitudinal decoherence. | but we are looking at the longitudinal decoherence. |
| 12.1 | 446 | What role or roles do you play in the quantum computing ecosystem are you? | What role or roles do you play in the quantum computing ecosystem? |

## First Edition, second printing, February 2020, Production reference 2230120

The changes are relative to the version above. This included a refresh of the print and PDF eBook. The Amazon Kindle version was first introduced here and includes these changes.

| Section | New Page | Old Text | New Text |
| :---: | :---: | :---: | :---: |
| 1.1 | 4 | problems that cuurently appear | problems that currently appear |
| 3.3 | 64 | $12=3 \times 4$ | $12=3 \times 4=2^{2} \times 3$ |
| 3.4 | 73 | this shows $n^{2}$ and $n$ are even | this shows that $n^{2}$ and $n$ are even |
| 3.5.1 | 75 | to $10^{-1}=\frac{1}{100}=$ one hundreth | to $10^{-2}=\frac{1}{100}=$ one hundreth |
| 3.5.4 | 85 | and, second, the have | and, second, they have |
| 3.6.2 | 92 | $\begin{aligned} & (a+b \sqrt{2}) \times(c+d \sqrt{2})= \\ & (a c+2 b d)+(a d+b c \sqrt{2}) \end{aligned}$ | $\begin{aligned} & (a+b \sqrt{2}) \times(c+d \sqrt{2})= \\ & (a c+2 b d)+(a d+b c) \sqrt{2} \end{aligned}$ |
| 3.6.4 | 93 |  | Delete the third bullet starting "There exists a unique element $i d$ ". |
| 3.8 | 96 | $(a, b)+(c, d)=(a+c)+(b+d)$ | $(a, b)+(c, d)=(a+c, b+d)$ |
| 3.9 | 101 | Just as $\mathbb{Z}$ fixed the subtraction $\square$ close problem for $\mathbb{N}$ | Just as $\mathbb{Z}$ fixed the subtraction closure problem for $\mathbb{N}$ |
| 4.1 | 111 | If $f$ and $g$ are functions such that $g(f(x))=x f(g(y))=y$ | If $f$ and $g$ are functions such that $g(f(x))=x$ and $f(g(y))=y$ |
| 4.2.1 | 112 | upper right side of the graph and $\left(\frac{5}{2},-1\right)$ in the lower left | upper right side of the graph and $\left(-\frac{5}{2},-1\right)$ in the lower left |
|  |  | The third and fourth quadrants have $x<0$ and $y<0$, and $x>0$ and $y>0$, respectively. | The third and fourth quadrants have $x<0$ and $y<0$, and $x>0$ and $y<0$, respectively. |
| 5.1 | 139 | If $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v 1, v_{2}\right)$, | If $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$, |
| 5.3.2 | 150 | The linear transformations $(x, y) \mapsto(-x, y)(x, y) \mapsto(x,-y)$ | The linear transformations $(x, y) \mapsto(-x, y) \text { and }(x, y) \mapsto(x,-y)$ |
| 5.7.2 | 178 | $\langle\mathbf{v}, \mathbf{v}\rangle=0$ if and only $\mathbf{v}$ is zero. | $\langle\mathbf{v}, \mathbf{v}\rangle=0$ if and only if $\mathbf{v}$ is zero. |
| 5.11.2 | 201 | The function $f: \mathbf{R} \rightarrow \mathbf{S}$ is a homomorphism ring if | The function $f: \mathbf{R} \rightarrow \mathbf{S}$ is a ring homomorphism if |
| 5.11.3 | 202 | $f(\mathbf{v}+\mathbf{w})=f(\mathbf{v})+(\mathbf{w})$ | $f(\mathbf{v}+\mathbf{w})=f(\mathbf{v})+f(\mathbf{w})$ |


| Section | New Page | Old Text | New Text |
| :---: | :---: | :---: | :---: |
| 6.5 | 212 | with associated probabilities $p_{1}, p_{2}, p_{3}$, and $p_{4}$ | with associated probabilities $p_{0}, p_{1}, p_{2}$, and $p_{3}$ |
| 6.7 | 217 | $\operatorname{Pr} X>a$ | $\mathrm{P}(X)>a$ |
| 6.7 | 219 | Pr (we get 7 or fewer heads) | P (we get 7 or fewer heads) |
| 7.2 | 230 | When $n=m$, the bra-ket $\langle v \mid w\rangle=\langle v\|\|w\rangle=(\langle v\|)(\|w\rangle)$ of $\mathbf{v}$ and $\mathbf{w}$ is the usual inner product. | When $n=m$, the bra-ket $\langle v \mid w\rangle=\langle v\|\|w\rangle=(\langle v\|)(\|w\rangle)$ is the usual inner product. |
| 7.6.6 | 260 | These gates change the phase of a qubit state by $\square$ $\vartheta$. | These gates change the phase of a qubit state by $\square$ $\varphi$. |
| 7.8 | 267 |  | removed "eprint" from reference to make Kindle version work correctly |
| 8.2.1 | 276 | be the standard orthonormal basis kets for each of their $\mathbb{C}^{2}$ state spaces. $\begin{aligned} & \|\psi\rangle_{1}= \\ & a_{1}\|0\rangle_{1}+b_{1}\|1\rangle_{1} \text { with }\left\|a_{1}\right\|^{2}+\left\|b_{1}\right\|^{2}=1 \end{aligned}$ | be the standard orthonormal basis kets for each of their $\mathbb{C}^{2}$ state spaces. Let <br> $\|\psi\rangle_{1}=a_{1}\|0\rangle_{1}+b_{1}\|1\rangle_{1}$ with $\left\|a_{1}\right\|^{2}+\left\|b_{1}\right\|^{2}=$ 1 and |
|  | 278 | Is it still true that the sum of the squares of the absolute values of the coefficients still equals 1 ? | Is it still true that the sum of the squares of the absolute values of the coefficients equals 1 ? |
| 8.3.1 | 286 | This is a situation where the decimal expressions for the ket bases is concise. | This is a situation where the decimal expression for a basis ket is concise. |
| 8.3.3 | 290 | It is a permutation matrix that swaps the third and fourth coefficients of $\|\psi\rangle_{1} \otimes 2\|\psi\rangle_{2}$ | It is a permutation matrix that swaps the third and fourth coefficients of $\|\psi\rangle_{1} \otimes\|\psi\rangle_{2}$ |
| 9.7.2 | 333 | Here is an explicit search as you might do it in the IBM Q Experience. | Here is an explicit search as you might do it in the IBM Q Experience, though the qubits are shown in reverse order there. |
| 9.9 | 354 | Simon's algorithm was the inspiration $\square$ Peter Shor | Simon's algorithm was the inspiration $\square$ for Peter Shor |
| 10.1 | 359 | " $\omega$ " is the lowercase greek letter "omega." | " $\omega$ " is the lowercase Greek letter "omega." |
| 10.5.1 | 390 | The $\|y\rangle$ are the computational basis vectors in a $2^{\ell_{\text {bits }}}$ vector space over $\mathbb{C}$. | The $\|y\rangle$ are the computational basis vectors in a $2^{\ell_{\text {bits }} \text {-dimensional }}$ vector space over $\mathbb{C}$. |
| 11.4.1 | 417 | $p_{t}=\operatorname{Pr}\|1\rangle$ | $p_{t}=\mathrm{P}(\|1\rangle)$ |
| 11.4.2 | 420 | $p_{t}=\operatorname{Pr}\|1\rangle$ | $p_{t}=\mathrm{P}(\|1\rangle)$ |


| Section | New Page | Old Text | New Text |
| :--- | :--- | :--- | :--- |
| 11.10 | 442 | Superconducting transmon qubits are <br> used by IBM and others | Superconducting transmon qubits are <br> used by IBM, Google, and others |
| D | J71 | James Yu's LaTeX Workshop extension <br> made creating this book much easier. | reprint" from references to <br> make Kindle version work correctly |
| James Yu's LaTeX Workshop extension |  |  |  |
| made creating this book much easier. |  |  |  |
| tex4ht and make4ht were used with |  |  |  |
| custom Python and sed scripts to produce |  |  |  |
| the eBook. |  |  |  |

One index entry changed because of a small and localized pagination change in the text.

## First Edition, first printing, November 2019, Production reference 1251119

This was the very first version made available in print and in PDF eBook. It did not have an Amazon Kindle or any other MOBI or EPUB3 format.

