Changes, clarifications, and errata

This document describes changes between versions of the book *Dancing with Qubits* by Robert S. Sutor and published by Packt Publishing. It does not include minor changes in formatting or punctuation.

The changes in one printing were incorporated into all later printings. The page numbers refer to the paperback version of the book.

Section	New Page	Old Text		New Te	xt		
		s b r		S	b	r	
		2				.2	
		.4 .0 .4		.4	.0	.4	
353	87	.8 .00 .8		.8	.00	.8	
5.5.5	02	1.6 .0001 .6		1.6	.001	.6	
		1.2 .00011 .2		1.2	.0011	.2	
		.4 .000110 .4		.4	.00110	.4	
		: : :		÷	÷	÷	
3.5.3	82	$.2_{10} = .\overline{00011}_2$		$.2_{10} = .\overline{0}$	00112		
3.9.2	98	$\operatorname{Im}(z) = -\operatorname{Im}(\overline{z}) = -b$		$\operatorname{Im}(\overline{z}) =$	$-\mathrm{Im}(z) = -$	-b	
4.3.2	127	$\operatorname{arcsin}(x)$ is a function with domain $-1 \le x \le 1$ and range $\left\lfloor \frac{\pi}{2} \right\rfloor \le \operatorname{arcsin}(x) \le \frac{\pi}{2}.$		$\arcsin(x) -1 \le x$ $\boxed{-\frac{\pi}{2}} \le$	(i) is a function ≤ 1 and range $\arcsin(x) \leq 1$	on with domain ge $\frac{\pi}{2}$.	
4.3.2	128	$\arctan(x)$ is a function with \mathbb{R} and range $\frac{\pi}{2} < \arctan(x) < \frac{\pi}{2}$.	n domain all of	$\arctan(x)$ \mathbb{R} and ratio $\left[-\frac{\pi}{2}\right] < \infty$	 is a function ange arctan(x) < 	on with domain al $\frac{\pi}{2}.$	ll of
7.2	230	$ v\rangle\langle w = \begin{cases} v_1\overline{w_1} & v_1\overline{w_2} & \cdot \\ v_2\overline{w_1} & v_2\overline{w_2} & \cdot \\ \vdots & \vdots & \cdot \\ v_2\overline{w_1} & v_2\overline{w_2} & \cdot \end{cases}$	$ v_1 \overline{w_m} $ $ v_2 \overline{w_m} $ $ v_2 \overline{w_m} $ $: $ $ v_2 \overline{w_m} $	v⟩⟨w =	$= \begin{bmatrix} v_1 \overline{w_1} & v_1 \\ v_2 \overline{w_1} & v_2 \\ \vdots \\ v_n \overline{w_1} & v_n \end{bmatrix}$	$\overline{w_2} \cdots v_1 \overline{w_m}$ $\overline{w_2} \cdots v_2 \overline{w_m}$ $\vdots \cdots \vdots$ $\overline{w_2} \cdots v_n \overline{w_m}$	
7.3.3	239	For $ \psi\rangle$ expressed generall $r_1 e^{\varphi_1 i} 1\rangle 0\rangle + r_2 e^{\varphi_2 i} 1\rangle$	y by	For $ \psi\rangle$ $r_1 e^{\varphi_1 i}$	expressed get $0\rangle$ + $r_2 e^{\varphi_2 i}$	enerally by 1>	

Changes after the First Edition, third printing, June 2021, Production reference 1290421

Section	New Page	Old Text	New Text
7.4	246	The inverse function $f^{-1}(a)$ for an a in \mathbb{R} is defined by $f^{-1}(a) =$ $\begin{cases} (0, -1) & \text{when } a = 0 \\ \left(\frac{4a}{4+a^2} + \sqrt{1 - \left(\frac{4a}{4+a^2}\right)^2}\right) & \text{when } a \ge 1 \\ \left(\frac{4a}{4+a^2} - \sqrt{1 - \left(\frac{4a}{4+a^2}\right)^2}\right) & \text{otherwise} \end{cases}$	The inverse function $f^{-1}(a)$ for an a in \mathbb{R} is defined by $f^{-1}(a) = (x, y)$ where (x, y) = (0, -1) when $a = 0$, and $x =\begin{cases} \frac{4a}{4+a^2} + \sqrt{1 - \left(\frac{4a}{4+a^2}\right)^2} & \text{when } a \ge 1 \\ \frac{4a}{4+a^2} - \sqrt{1 - \left(\frac{4a}{4+a^2}\right)^2} & \text{otherwise} \end{cases}with y = -\frac{2}{a}x + 1.$
7.5	249	$r_{1}e^{\varphi_{1}i} 0\rangle + r_{2}e^{\varphi_{2}i} 1\rangle = (e^{\varphi_{1}i})\left(r_{1} 0\rangle + r_{2}e^{i(\varphi_{2}-\varphi_{2})} 1\rangle\right)$	$r_1 e^{\varphi_1 i} 0\rangle + r_2 e^{\varphi_2 i} 1\rangle = (e^{\varphi_1 i}) \left(r_1 0\rangle + r_2 e^{i(\varphi_2 - \varphi_1)} 1\rangle \right)$
7.5	249	if the difference is negative.ß	if the difference is negative.
8.2.2	282	$ 0\rangle\langle 0 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \text{and} 1\rangle\langle 0 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.$	$ 0\rangle\langle 0 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \text{and} 1\rangle\langle 0 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}.$

Changes after the First Edition, second printing, February 2020, Production reference 2230120

These changes should be applied to the text in this edition.

Section	New Page	Old Text	New Text
2.1	27	Thus a tarabuta is $10^{12} - 100000000000000000000000000000000000$	Thus a targhuta is 10^{12} –
2.1	21	bytes. $= 1,000,000,000$	1,000,000,000,000 bytes.
2.1	28	If I change bit 6 in 'a' to a 0, I get the character '1'.	If I change bit 6 in 'a' to a 0, I get the character '!'.
2.5	40	produces a 2-bit answer CD .	produces a 2-bit answer CS .
3.4.2	73	the square of an odd integer looks like $4k^2 + 2k + 1$	the square of an odd integer looks like $4k^2 + 4k + 1$
7.7	266	$c_{\sigma_x} c_{\sigma_y}$, and c_{σ_z} are Pauli matrices	$\sigma_x \sigma_y$, and σ_z are Pauli matrices

Section	New Page	Old Text	New Text
8.2.1	280	the tensor products of two 1-qubit kets: $ \psi\rangle_1 \otimes \psi\rangle_2 =$	the tensor products of two 1-qubit kets: $ \psi\rangle_1 \otimes \psi\rangle_2 =$
		$(a_1 0\rangle_1 + b_1 1\rangle_1) \otimes$	$(a_1 0\rangle_1 + b_1 1\rangle_1) \otimes$
		$(a_1 0\rangle_1 + b_2 1\rangle_1)$	$(a_2 0\rangle_2 + b_2 1\rangle_2)$
8.2.2	282	and we have $\begin{aligned} a_0 ^2 + a_1 ^2 + a_2 ^2 + \cdots \\ + \boxed{ 2^n - 1 ^2} = 1. \end{aligned}$	and we have $ a_0 ^2 + a_1 ^2 + a_2 ^2 + \cdots + a_{2^n-1} ^2 = 1.$
8.3.1	287	summations like $\sum_{j=0}^{n-1}$ at the end of the section	should be changed to $\sum_{j=0}^{2^n-1}$
		$\mathbf{H}^{\otimes 4} 0\rangle = \frac{1}{\sqrt{2^4}} \sum_{j=0}^3 j\rangle$	$\mathbf{H}^{\otimes 4} 0\rangle = \frac{1}{\sqrt{2^4}} \sum_{j=0}^{2^4-1} j\rangle$
9.6.2	328	we are talking about the balanced superposition ket $ \varphi\rangle = \mathbf{H}^{\otimes 2} 000\rangle \mathbf{H}^{\otimes 2}$.	we are talking about the balanced superposition ket $ \varphi\rangle = \mathbf{H}^{\otimes 3} 000\rangle$.
9.8.2	343	Note how the how the signs reverse.	Note how the signs reverse.
10.2.3	371	Keep going until N is not prime.	Keep going until N is not odd.
10.2.3	376	Let's try $N = 143$. $s = 11$ and since $s^2 \neq 144$, set $u = s + 1 = 12$.	Let's try $N = 143$. $s = 11$ and since $s^2 \neq 143$, set $u = s + 1 = 12$.
10.2.4	378	The the integer square root of N is 4.	Then the integer square root of N is 4.
11.4.2	418	but we are looking the longitudinal decoherence.	but we are looking at the longitudinal decoherence.
12.1	446	What role or roles do you play in the quantum computing ecosystem are you?	What role or roles do you play in the quantum computing ecosystem?

First Edition, second printing, February 2020, Production reference 2230120

The changes are relative to the version above. This included a refresh of the print and PDF eBook. The Amazon Kindle version was first introduced here and includes these changes.

Section	New Page	Old Text	New Text
1.1	4	problems that cuurently appear	problems that currently appear
3.3	64	$12 = 3 \times 4$	$12 = 3 \times 4 = 2^2 \times 3$
3.4	73	this shows n^2 and n are <i>even</i>	this shows that n^2 and n are <i>even</i>
3.5.1	75	to 10^{-1} = $\frac{1}{100}$ = one hundreth	to 10^{-2} = $\frac{1}{100}$ = one hundreth
3.5.4	85	and, second, the have	and, second, they have
3.6.2	92	$(a+b\sqrt{2}) \times (c+d\sqrt{2}) =$	$(a+b\sqrt{2}) \times (c+d\sqrt{2}) =$
		$(ac+2bd) + \left(ad+bc\sqrt{2}\right)$	$(ac+2bd) + (ad+bc)\sqrt{2}$
3.6.4	93		Delete the third bullet starting "There exists a unique element <i>id</i> ".
3.8	96	(a,b) + (c,d) = (a+c) + (b+d)	(a,b) + (c,d) = (a+c,b+d)
3.9	101	Just as \mathbb{Z} fixed the subtraction close problem for \mathbb{N}	Just as \mathbb{Z} fixed the subtraction closure problem for \mathbb{N}
4.1	111	If f and g are functions such that g(f(x)) = x f(g(y)) = y	If <i>f</i> and <i>g</i> are functions such that $g(f(x)) = x$ and $f(g(y)) = y$
4.2.1	112	upper right side of the graph and $(\frac{5}{2}, -1)$ in the lower left	upper right side of the graph and $(-\frac{5}{2}), -1)$ in the lower left
		The third and fourth quadrants have $x < 0$ and $y < 0$, and $x > 0$ and $y > 0$, respectively.	The third and fourth quadrants have $x < 0$ and $y < 0$, and $x > 0$ and $y < 0$, respectively.
5.1	139	If $u = (u_1, u_2)$ and $v = (v_1, v_2)$,	If $u = (u_1, u_2)$ and $v = (v_1, v_2)$,
5.3.2	150	The linear transformations $(x, y) \mapsto (-x, y) (x, y) \mapsto (x, -y)$	The linear transformations $(x, y) \mapsto (-x, y)$ and $(x, y) \mapsto (x, -y)$
5.7.2	178	$\langle \mathbf{v}, \mathbf{v} \rangle = 0$ if and only v is zero.	$\langle \mathbf{v}, \mathbf{v} \rangle = 0$ if and only if \mathbf{v} is zero.
5.11.2	201	The function $f : \mathbf{R} \to \mathbf{S}$ is a <i>homomorphism ring</i> if	The function $f : \mathbf{R} \to \mathbf{S}$ is a ring homomorphism if
5.11.3	202	$f(\mathbf{v} + \mathbf{w}) = f(\mathbf{v}) + \boxed{(\mathbf{w})}$	$f(\mathbf{v} + \mathbf{w}) = f(\mathbf{v}) + f(\mathbf{w})$

Section	New Page	Old Text	New Text		
6.5	212	with associated probabilities p_1, p_2, p_3 , and p_4	with associated probabilities p_0, p_1, p_2 , and p_3		
6.7	217	$\Pr{X} > a$	P(X) > a		
6.7	219	Pr (we get 7 or fewer heads)	P (we get 7 or fewer heads)		
7.2	230	When $n = m$, the bra-ket $\langle v w \rangle = \langle v w \rangle = (\langle v) (w \rangle)$ of v and w is the usual <i>inner product</i> .	When $n = m$, the bra-ket $\langle v w \rangle = \langle v w \rangle = (\langle v) (w \rangle)$ is the usual <i>inner product</i> .		
7.6.6	260	These gates change the phase of a qubit state by ϑ .	These gates change the phase of a qubit state by φ .		
7.8	267		removed "eprint" from reference to make Kindle version work correctly		
8.2.1	276	be the standard orthonormal basis kets for each of their \mathbb{C}^2 state spaces.	be the standard orthonormal basis kets for each of their \mathbb{C}^2 state spaces. Let		
		$ \psi\rangle_1 = a_1 0\rangle_1 + b_1 1\rangle_1$ with $ a_1 ^2 + b_1 ^2 = 1$	$ \psi\rangle_1 = a_1 0\rangle_1 + b_1 1\rangle_1$ with $ a_1 ^2 + b_1 ^2 = 1$ and		
	278	Is it still true that the sum of the squares of the absolute values of the coefficients still equals 1?	Is it still true that the sum of the squares of the absolute values of the coefficients equals 1?		
8.3.1	286	This is a situation where the decimal expressions for the ket bases is concise.	This is a situation where the decimal expression for a basis ket is concise.		
8.3.3	290	It is a permutation matrix that swaps the third and fourth coefficients of $ \psi\rangle_1 \otimes 2 \psi\rangle_2$.	It is a permutation matrix that swaps the third and fourth coefficients of $ \psi\rangle_1 \otimes \psi\rangle_2$.		
9.7.2	333	Here is an explicit search as you might do it in the IBM Q Experience.	Here is an explicit search as you might do it in the IBM Q Experience, though the qubits are shown in reverse order there.		
9.9	354	Simon's algorithm was the inspiration to Peter Shor	Simon's algorithm was the inspiration for Peter Shor		
10.1	359	" ω " is the lowercase greek letter "omega."	" ω " is the lowercase Greek letter "omega."		
10.5.1	390	The $ y\rangle$ are the computational basis vectors in a $2^{\ell_{\text{bits}}}$ vector space over \mathbb{C} .	The $ y\rangle$ are the computational basis vectors in a $2^{\ell_{\text{bits}}}$ -dimensional vector space over \mathbb{C} .		
11.4.1	417	$p_t = Pr 1\rangle$	$p_t = \mathbf{P}\left(1\rangle\right)$		
11.4.2	420	$p_t = Pr 1\rangle$	$p_t = \mathbf{P}\left(1\rangle\right)$		

Section	New Page	Old Text	New Text
11.10	442	Superconducting transmon qubits are used by $\boxed{\text{IBM}}$ and others	Superconducting transmon qubits are used by IBM, Google, and others
			removed "eprint" from references to make Kindle version work correctly
D	471 James Yu's LaTeX Workshop extension made creating this book much easier.		James Yu's LaTeX Workshop extension made creating this book much easier. tex4ht and make4ht were used with custom Python and sed scripts to produce the eBook.

One index entry changed because of a small and localized pagination change in the text.

First Edition, first printing, November 2019, Production reference 1251119

This was the very first version made available in print and in PDF eBook. It did not have an Amazon Kindle or any other MOBI or EPUB3 format.